Bayesian analysis of longitudinal binary data using Markov regression models with skewed links

Seongho Song

Department of Mathematical Sciences, University of Cincinnati

Dec 10, 2013
Joint work with

Younshik Chung
Department of Statistics, Pusan National University

and

Dipak K. Dey
Department of Statistics, University of Connecticut
Special thanks to CCTST

This project was supported by an Institutional Clinical and Translational Science Award, NIH/NCATS Grant Number 8UL1TR000077-04. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.
Introduction

Bayesian Variable Selection
George and McCulloch (1993, 1997)
Kuo and Mallick (1998)
Green (1995); Richardson and Green (1997)

Skewed link for binary response
Chen, Dey and Shao (1999)

Markov Regression for longitudinal data

Non-Bayesian approach
Cox (1970), Bishop (1975), Diggle et al (1994) etc

Bayesian approach
Erkanli, Soyer and Angold (2001)
Model

- Bayesian Analysis of Longitudinal binary data using Markov regression models with skewed link
 - Model
 - Likelihood
 - Informative Prior
 - Reversible Jump
- Application of Indonesian children’s health study (ICHIS)
- Discussion
Bayes Factor - Berger (1995)
L-measure - Gelfand and Ghosh (1998)
George and McCulloch (1993) - Using Hierarchical Model

Consider the linear model.

\[Y | \beta, \sigma^2 \sim N_n(X\beta, \sigma^2 I) \]

where \(Y \) is \(n \times 1 \), \(X = [X_1, \ldots, X_p] \) is \(n \times p \), \(\beta = (\beta_1, \ldots, \beta_p)^T \), and \(\sigma^2 \) is a scalar.
George and McCulloch (1993) Continued

Consider normal mixture prior of β with the latent variable $\gamma_i = 0$ or 1.

$$
\beta_i|\gamma_i \sim (1 - \gamma_i)N(0, \tau_i^2) + \gamma_i N(0, c_i^2 \tau_i^2)
$$

and

$$
P(\gamma_i = 1) = 1 - P(\gamma_i = 0) = p_i
$$

- Set $\tau_i (> 0)$ small so that if $\gamma_i = 0$, then β_i would be small.
- Set c_i large ($c_i > 1$ always) so that $\gamma_i = 0$, then β_i should be included in the model.
George and McCulloch (1993) Continued

By obtaining the marginal posterior distribution of γ,

$$f(\gamma|Y) \propto f(Y|\gamma)f(\gamma),$$

the variable selection can be done.
Kuo and Mallick (1998) - Using Indicators

Consider the linear model with indicator variables.

\[y_i = \sum_{j=1}^{p} \beta_j \gamma_j x_{ij} + \epsilon_i \]

When \(\gamma_j = 1 \), include the \(j \)-th covariate in the model.
When \(\gamma_j = 0 \), omit the \(j \)-th covariate from the model.
Again, by obtaining the marginal posterior distribution of \(\gamma \),

\[f(\gamma|Y) \propto f(Y|\gamma)f(\gamma), \]

the variable selection can be done.

Consider the dimension of parameter space as unknown random.

It is useful for the following model:
- variable selection in regression
- non-nested regression model
- Bayesian choice between models with different numbers of parameters
- Change point problems
- etc
Skewed Link model - Chen, Dey and Shao (1999)

Let \(w = (w_1, \ldots, w_n)^T \) be a vector of independent latent variables. The Skewed Link model is formulated as

\[
Y_{it} = \begin{cases}
1, & \text{if } w_i < 0 \\
0, & \text{if } w_i \geq 0
\end{cases},
\]

where

\[
w_i = x_i^T \beta + \delta z_i + \epsilon_i, \quad z_i \sim G
\]

and \(\epsilon_i \sim F, z_i \) and \(\epsilon_i \) are independent, \(G \) is the cdf of skewed dist., and \(F \) is the cdf of a symmetric dist. \(\delta \) is a skewness parameter.
Then,

\[p_i = P(y_i = 1) = \int_{-\infty}^{\infty} F(x_i^T \beta + \delta z_i) g(z_i) \, dz_i, \]

and

\[1 - p_i = P(y_i = 0) = \int_{-\infty}^{\infty} [1 - F(x_i^T \beta + \delta z_i)] g(z_i) \, dz_i, \]

where \(g(z_i) \) is the pdf of \(z_i \).
Non-Bayesian Approaches - MLE, GEE approach

Cox (1970)
Bishop (1975)
Diggle et al (1994)
Markov Regression Model

- Bayesian Approaches - Erkanli, Soyer and Angold (2001)
- Consider the binary observations \((Y_{i1}, \ldots, Y_{iT})\), where \(Y_{it} = \begin{cases} 1, & \text{the } i^{th} \text{ patient has an event at time } t \\ 0, & \text{otherwise} \end{cases}\) for \(i = 1, \ldots, n\) and \(t = 1, \ldots, T\).
- \(H_{it} = \{y_{i1}, \ldots, y_{i,t-1}\}\) is the history vector for \(i^{th}\) subject available up to time \(t\).
- \(p_{it} = \Pr(Y_{it} = 1|H_{it})\) is the probability of a subject having an event at time \(t\), which depends on the subject’s past events through vector \(H_{it}\).
- \(x'_{it} = (x_{it1}, \ldots, x_{itp})\) is the corresponding covariates of \(y_{it}\).
Markov Regression model with logit link

\[
p(y_{i1}, \ldots, y_{iT}) = \prod_{t=1}^{T} p(y_{it}|H_{it}),
\]

where

\[
p(y_{it}|H_{it}) = p_{it}^{y_{it}} (1 - p_{it})^{1-y_{it}},
\]

\[
\text{logit}(p_{it}) = \mu + x_{it}'\delta + g(H_{it}),
\]

where

\[
g(H_{it}) = \sum_{k=1}^{q} \gamma_{k}y_{i,t-k}
\]

describes a \(q\)th order Markov logistic regression model. Consider an extended version for the variable selection as

\[
g(H_{it}) = \sum_{k=1}^{q} \gamma_{k}\beta_{k}y_{i,t-k}
\]
Markov Regression model with Skewed link
Model with skewed link
Observed and Complete Likelihood Functions
Informative Prior
Reversible Jump
Consider the binary observations \((Y_{i1}, \ldots, Y_{iT}), i = 1, \ldots, n\) where \(Y_{it} = \begin{cases} 1, & \text{the } i^{th} \text{ patient has an event at time } t \\ 0, & \text{otherwise} \end{cases}\) for \(t = 1, \ldots, T\).

\(H_{it} = \{y_{i1}, \ldots, y_{i,t-1}\}\) is the history vector for \(i^{th}\) subject available up to time \(t\).

\(p_{it} = Pr(Y_{it} = 1|H_{it})\) is the probability of a subject having an event at time \(t\), which depends on the subject’s past events through vector \(H_{it}\).

\(x'_{it} = (x_{it1}, \ldots, x_{itp})\) is the corresponding covariates of \(y_{it}\).
Model

\[p(y_{i1}, \ldots, y_{iT}) = \prod_{t=1}^{T} p(y_{it}|H_{it}), \]

where

\[p(y_{it}|H_{it}) = p_{it}^{y_{it}} (1 - p_{it})^{(1-y_{it})}, \]

\[\text{link}(p_{it}) = \mu + x_{it}' \beta + h(H_{it}), \]

and \(\beta' = (\beta_1, \ldots, \beta_p) \).
Choice of $h(\cdot)$

- $h(\cdot)$ is depending on the different belief about the subjects’ transition behaviors.
- Consider the q^{th} order additive function,

$$h(H_{it}) = \sum_{k=1}^{q} \gamma_k y_{it-k}$$

for $q \in \{1, \ldots, q_{max}\}$, $1 \leq q_{max} \leq T - 1$.
- Assume that q is unknown random order of $h(\cdot)$.
Link Function
Consider the skewed links, discussed by Chen, Dey and Shao (1999).
For any cdf F, for example, $F(t) = \Phi(t)$ and $F(t) = \frac{e^t}{1+e^t}$,

$$p_{it} = Pr(Y_{it} = 1) = \int_{-\infty}^{\infty} F(\mu + x_{it}'\beta + h(H_{it}) + \delta z_{it}) g(z_{it}) dz_{it}$$

and

$$1-p_{it} = Pr(Y_{it} = 0) = \int_{-\infty}^{\infty} \left[1 - F(\mu + x_{it}'\beta + h(H_{it}) + \delta z_{it}) \right] g(z_{it}) dz_{it},$$

where $g(\cdot)$ is the pdf of z_{it}.
Observed Likelihood Function

Let $D_{obs} = (n, Y, X)$ denote the observed data. Then, the likelihood function for the skewed link model is given by

$$L(\mu, \beta, \delta, \gamma|D_{obs}) = \prod_{i=1}^{n} \prod_{t=1}^{T} \prod_{t=1}^{T} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[F(x_{it}' \beta + h(H_{it}) + \delta z_{it}) \right]^{y_{it}}$$

$$\times \left[1 - F(x_{it}' \beta + h(H_{it}) + \delta z_{it}) \right]^{1-y_{it}} g(z_{it}) dz_{it}.$$

$$= \prod_{i=1}^{n} \prod_{t=1}^{T} \int_{1(y_{it} = 0)1(w_{it} \leq 0) + 1(y_{it} = 1)1(w_{it} > 0)} \left\{ f(w_{it} - \mu - x_{it}' \beta - h(H_{it}) - \delta z_{it}) g(z_{it}) \right\} dw_{it} dz_{it}.$$

where $f(\cdot)$ is the pdf of $F(\cdot)$.
Complete Likelihood Function

Let $z_i = (z_{i1}, \ldots, z_{iT})'$, $w_i = (w_{i1}, \ldots, w_{iT})'$ be the augmented data.

Let $D = (n, y, X, z, w)$ denote the complete data. Then the complete-data likelihood function of the parameter $(\mu, \beta, \delta, \gamma, z, w)$ can be written as

$$L^*(\mu, \beta, \delta, \gamma, w, z \mid n, y, X) = \prod_{i=1}^{n} \prod_{t=1}^{T} \left[1(y_{it} = 0)1(w_{it} \leq 0) + 1(y_{it} = 1)1(w_{it} > 0) \right] \times f(w_{it} - \mu - x_{it}' \beta - h(H_{it}) - \delta z_{it})g(z_{it})$$
Informative Priors
Assume that μ, δ, γ and β are independently distributed with

\[
\begin{align*}
\mu & \sim N(0, \sigma_\mu^2), \\
\beta & \sim N_p(0, \sigma_\beta^2), \\
\gamma & \sim N_q(\gamma_0, \sigma_\gamma^2) \\
\delta & \sim N(0, \sigma_\delta^2),
\end{align*}
\]
Reversible Jumps
Assume that the random order of $h(\cdot)$ follows Poisson distribution with parameter λ,

$$p(q) = \frac{e^{-\lambda} \lambda^q}{q!}, \quad q = 0, 1, \ldots.$$

A Poisson distribution truncated to $q < n$ or to $q < q_{max}$ for a suitable choice of q_{max} is more sensible here.
Three move types for our problem

- Updating all the parameters given the value q
- Birth step w.p.

$$b_q = c \cdot \min \left\{ 1, \frac{p(q + 1)}{p(q)} \right\}$$

- Death step w.p.

$$d_{q+1} = c \cdot \min \left\{ 1, \frac{p(q)}{p(q + 1)} \right\},$$

where the constant c is chosen as large as possible subject to

$$b_q + d_q \leq .9, \text{ for all } q = 0, 1, \ldots, q_{max},$$

$$d_0 = 0 \text{ and } b_{q_{max}} = 0$$
Joint posterior distributions of parameters, for a given q,

$$p(\mu, \beta, \delta, \gamma, w, z|n, y, X)$$

$$= \left[\prod_{i=1}^{n} \prod_{t=1}^{T} \left\{ 1(y_{it} = 0)1(w_{it} \leq 0) + 1(y_{it} = 1)1(w_{it} > 0) \right\} \right]$$

$$\times f(w_{it} - \mu - x'_{it}\beta - h(H_{it}) - \delta z_{it})g(z_{it})]$$

$$\times N(\mu|0, \sigma^2_\mu)$$

$$\times N_p(\beta|0, \sigma^2_\beta I_p)$$

$$\times N(\delta|0, \sigma^2_\delta)$$

$$\times N_q(\gamma|\gamma_0, \sigma^2_{\gamma_{\text{gamma}}} I_q))$$
For Full Conditional Distributions, assume that $f = \phi$ and $g = \phi^+$.

$$[\mu|\cdots\cdots] = N\left(\mu| (\sigma_\mu^{-2} + nT)^{-1} \left[w_{it} - x_{it}^T\beta - h(H_{it}) - \delta \ast z_{it}\right], (\sigma_\mu^{-2} + nT)^{-1}\right)$$
Markov Regression model with Skewed link - FCD

For \(l = 1, \ldots, p \),

\[
[\beta_l | \beta_{(-l)}, \cdots \cdots] = N \left(\beta_l | \mu_{\beta_l}, \left(\sigma_{\beta}^{-2} + \sum_i \sum_t x_{itl}^2 \right)^{-1} \right)
\]

where

\[
\mu_{\beta_l} = \left(\sigma_{\beta}^{-2} + \sum_i \sum_t x_{itl}^2 \right)^{-1} \times \left[\sum_i \sum_t x_{itl}(w_{it} - x_{itl}^T \beta - h(H_{it}) - \delta \ast z_{it} - x_{itl}^T \beta_{(-l)}) \right]
\]

and

\[
x_{itl}^T \beta_{(-l)} = x_{it1l}^T \beta_1 + x_{it2}^T \beta_2 + \cdots + x_{it, l-1}^T \beta_{l-1} + x_{it, l+1}^T \beta_{l+1} + \cdots + x_{itp}^T \beta_p .
\]
\[
[\delta | \cdots \cdots] = N \left(\delta | \mu_\delta, \left(\sigma_\delta^{-2} + \sum_i \sum_t x_{itl}^2 \right)^{-1} \right)
\]

where

\[
\mu_\delta = \left(\sigma_\delta^{-2} + \sum_i \sum_t z_{it}^2 \right)^{-1} \left[\sum_i \sum_t z_{it} (w_{it} - x_{it}^T \beta - h(\mathcal{H}_{it})) \right]
\]
For γ_k, $k = 1, \ldots, q$, $q \in \{1, 2, \ldots, q_{max}\}$, $1 \leq q_{max} \leq T - 1$,

$$[\gamma_k| \cdots] = N\left(\gamma_k| \mu_{\gamma_k}, \left(\sigma^{-2}_\gamma + \sum_i \sum_t y_{i,t-k}^2 \right)^{-1} \right)$$

where

$$\mu_{\gamma_k} = \left(\sigma^{-2}_\gamma + \sum_i \sum_t y_{i,t-k}^2 \right)^{-1}$$

and

$$h(H_{it})_{(-l)} = \gamma_1 y_{i,t-1} + \cdots + \gamma_{k-1} y_{i,t-k+1} + \gamma_{k+1} y_{i,t-k-1} + \cdots + \gamma_q y_{i,t-q}.$$
For $i = 1, \ldots, n$ and $t = 1, \ldots, T$,

$$[w_{it} | \cdots] = N^+ \left(w_{it} | \mu + x_{it}^T \beta + h(H_{it}) - \delta z_{it}, 1 \right),$$

$w_{it} > 0$ if $y_{it} = 1$

$$N^- \left(w_{it} | \mu + x_{it}^T \beta + h(H_{it}) - \delta z_{it}, 1 \right),$$

$w_{it} < 0$ if $y_{it} = 0$

For $i = 1, \ldots, n$ and $t = 1, \ldots, T$,

$$[z_{it} | \cdots] = N^+ \left(z_{it} | \delta(1 + \delta^2)^{-1}(w_{it} - \mu - x_{it}^T \beta - h(H_{it}), (1 + \delta^2)^{-1}) \right)$$

$z_{it} > 0$
Acceptance Probability for the birth step

$$\min \left\{ \text{Likelihood ratio } \times \text{ prior ratio } \times \frac{d_{q+1}}{b_q} \times \frac{1}{\gamma_{q+1}}, 1 \right\}$$

Acceptance Probability for death step is the same form but with re-labelling of the variables and the ratio term inverted.
Indonesian Children’s Health Study

- Consider the data on respiratory infection in Indonesian preschool children.
- \(n = 122 \) preschool children in Indonesian were examined for up to \(T = 6 \) consecutive quarters for the respiratory infection (Sommer, 1982).
- Consider gender, height for age, seasonal cosine and sine, presence of Xerophthalmia (Vitamin A deficiency), age as covariates.
Results of unknown order q

<table>
<thead>
<tr>
<th>q</th>
<th>posterior probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00000</td>
</tr>
<tr>
<td>1</td>
<td>0.97442</td>
</tr>
<tr>
<td>2</td>
<td>0.02510</td>
</tr>
<tr>
<td>3</td>
<td>0.00044</td>
</tr>
<tr>
<td>4</td>
<td><0.00000</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>2.5%</th>
<th>50%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0.0818</td>
<td>0.1608</td>
<td>-0.2358</td>
<td>0.0825</td>
<td>0.3954</td>
</tr>
<tr>
<td>δ</td>
<td>-0.0012</td>
<td>0.1728</td>
<td>-0.3109</td>
<td>-0.0003</td>
<td>0.3098</td>
</tr>
<tr>
<td>μ</td>
<td>-1.4961</td>
<td>0.1694</td>
<td>-1.8295</td>
<td>-1.4915</td>
<td>-1.1839</td>
</tr>
<tr>
<td>β_1</td>
<td>-0.1166</td>
<td>0.1222</td>
<td>-0.3573</td>
<td>-0.1164</td>
<td>0.1213</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.0127</td>
<td>0.0110</td>
<td>-0.0344</td>
<td>-0.0127</td>
<td>0.0086</td>
</tr>
<tr>
<td>β_3</td>
<td>-0.3695</td>
<td>0.0926</td>
<td>-0.5537</td>
<td>-0.3687</td>
<td>-0.1905</td>
</tr>
<tr>
<td>β_4</td>
<td>-0.1326</td>
<td>0.0970</td>
<td>-0.3253</td>
<td>-0.1326</td>
<td>0.0565</td>
</tr>
<tr>
<td>β_5</td>
<td>0.5811</td>
<td>0.2598</td>
<td>0.0581</td>
<td>0.5865</td>
<td>1.0757</td>
</tr>
<tr>
<td>β_6</td>
<td>-0.0169</td>
<td>0.0038</td>
<td>-0.0244</td>
<td>-0.0169</td>
<td>-0.0097</td>
</tr>
<tr>
<td>β_7</td>
<td>-0.0002</td>
<td>0.0002</td>
<td>-0.0006</td>
<td>-0.0002</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Estimated Posterior Density

Figure: Plots of δ
Estimated Posterior Density

Figure: Plots of γ
Estimated Posterior Density

Figure: Plots of μ and β's
Estimated Posterior Density

Figure: Plots of β's
The presence of disease might depend only on the previous response.

Need not to consider skew parameter of link function for ICHS.

Consider model comparisons with different link functions

Simulation work will be done.
Thank you for your attentions.