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Introduction 

• Population health research seeks to determine the 
“health outcomes of a group of individuals, 
including the distribution of such outcomes within 
the group.”  

• (Kindig & Stoddart, 2003). 
 

• Populations can reflect geographic regions and/or 
socially defined groups.  
– e.g., Different racial and ethnic groups.  

 

 

 

 

 



Introduction 

• Approach “requires” measures of health outcomes 
of populations.  
– Urgent need for reliable and valid measures. 

 

• Approach also allows focus on disparities across 
subpopulations.  

 

 

 

 

 

 



Introduction 

• Health disparities.  
– AHRQ defines disparities as inequalities in health or 

health care that one population experiences relative to 
another. 

– (AHRQ, 2010). 

 
– IOM defines disparities as racial or ethnic differences in 

quality not due to access-related factors or clinical 
needs, preferences, and intervention appropriateness.  

– (IOM, 2002).  

 

 



Introduction 

• Others highlight distinction between: 
– Inequalities. 

• Differences. 
 

– Inequities. 
• Avoidable and unfair health inequities.  

– (Asada, 2005).  

 

• All highlight differences in distribution of health 
outcome(s) across population subgroups. 

 



Introduction 

• Accurately understanding differences in 
distribution of an outcome across heterogeneous 
populations requires equivalent measurement 
across population. 

• (Stahl & Hahn, 2006). 

 

• Little research addresses possibility that 
systematic measurement error influences 
population health research. 

 

 

 

 

 



Introduction 

• Before making cross-group comparisons, must 
consider measurement equivalence.  

 

• Do observed differences reflect true differences? 

 

• Or, do differences result from systematic 
measurement error? 

 



Measurement Bias 

• Refers to possibility that individuals with identical 
health respond dissimilarly to questions about 
their health as a function of their race or ethnicity. 

• (Mellenbergh, 1989).  

 

• Individuals with identical health statuses from 
different backgrounds may respond differently to 
questions about their health. 
– Should respond similarly, but don’t.  

 

• Systematic measurement error.  
– Measurement bias. 

– Differential item functioning (DIF). 



Measurement Bias 

• Measurement bias: 
– Individuals identical on measured construct respond 

dissimilarly as a function of group membership. 
• e.g., White, Black, Hispanic.  

 

 

• Measurement equivalence: 
– Denotes equal endorsement probabilities for 

individuals with equal construct values. 

 

– Group membership does not predict differences.  



Why Study Bias? 

• Generally decreases reliability and validity.  
• (Knight & Hill, 1998).  

 

• Attenuate or accentuate group differences.  
• (Carle, 2008).  

 

• Lead to inaccurate diagnoses.  
• (Carle,  2009).  

 

• Can render cross group comparisons impossible. 
• (Prelow, et al., 2002).  



Why Study Bias? 

• Without establishing equivalent measurement 
across the heterogeneous population, field cannot: 
– Comparatively evaluate what works best for whom. 

– Draw strong conclusions about disparate outcomes. 

– Support evidence-based practice and policy. 

– Address health disparities. 

 

• How might this influence research? 
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Why Study Bias? 
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Evaluating Bias 

• Latent variable models potently investigate bias. 
• (Millsap & Kwok, 2004, Muthén, 1989). 

 

• Equations describe the relations among item set. 

 

• Examine the cross-group equivalence of the 
measurement parameters in the equations. 

• (Millsap & Yun-Tien, 2004). 

 

• Differences in these parameters across groups 
reflect bias. 



Evaluating Bias 

• Multiple group (MG) confirmatory factor analyses 
for ordered-categorical measures (CFA-OCM). 
– One popular method.   

– Accounts for categorical nature of data. 

 

 



Evaluating Bias: MG-CFA-OCM 

• Let       equal the ith individual’s score on the 
jth ordered-categorical item.  
– Let the number of items be p (j = 1, 2, .., p). 

– Scores, m, range {0, 1, …, s}. 

 

• We assume a  continuous latent response 
variate,      , determines observed responses.  
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Evaluating Bias: MG-CFA-OCM 

• A threshold value on        determines responses: 
– If        less than the threshold, respond in one category.  

– If        greater than threshold, respond in at least next 
highest category. 

 

 

 

 

•                               represent threshold parameters. 
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Evaluating Bias: MG-CFA-OCM 

• Suppose some factor or set of factors, , is 
responsible for the observed scores. 

 

•       relates to the factor(s) as follows: 
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Evaluating Bias: MG-CFA-OCM 

•      : Latent intercept parameters. 
• Similar to intercepts in regression.  

 

•      : Factor loadings. 
• Similar to correlations.  
• Represents how strongly the latent response 

variate relates to the factor(s).  
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Evaluating Bias: MG-CFA-OCM 

•    : Individual’s level of the latent trait(s).  

 

•      : Variance not attributable to the factor(s).  
• Includes measurement error.  
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Evaluating Bias: MG-CFA-OCM 

• Subscript parameters to allow group differences.  

 

• Begin with the least restricted cross-group model. 
– Successively constrain subsequent models. 

– Model suitability addressed through goodness-of-fit-
indices (GFIs). 

• (Hu & Bentler, 1999). 

 

• If GFI set suggests fit not tenable at a given step, 
bias exists. 
– Bias in at least one statistical parameter. 

– Cross group comparisons not appropriate without 
adjustment.  



? 



Evaluating Bias: MG-CFA-OCM 

 

 



Evaluating Bias 

• Methodological and substantive issues can limit 
MG-CFA-OCM. 

 

• Difficult to incorporate multiple grouping 
variables simultaneously.  

 

• Why does this matter? 

 

• Bias may result from other variables that covary 
with ethnicity. 
– Educational attainment. 

– Income/poverty status.  

 
 

 



Observational Research 

• Difficult to simultaneously include multiple 
variables in “traditional” latent variable 
approaches.  

 

• Failure to include available information in model 
estimation may lead to erroneous conclusions. 

 

• What do we do?  
 



 
 



MG-MIMIC Models 

• Multiple group (MG) multiple indicator, 
multiple cause (MIMIC) models. 

 

– Build on developments in structural equation 
modeling, IRT, and CFA-OCM. 

• (Jones, 2003; Jones, 2006; Muthén, 1989) 

 

• Control for “extra” variables by incorporating 
them as covariates. 

 

 



MG-MIMIC Models 

• Simultaneously: 

 

• Examine and control response differences due to 
covariates (e.g., SES)….. 

 

– And  

 

• Allow bias investigation across groups with 
background variable effects removed. 

 

• More fully address heterogeneity within and 
across groups. 

 



Evaluating Bias: MG-MIMIC 

 

•        represents the covariate.  

 

• Parameters in κ capture the direct effect of the 
covariate on question responses.  
– Addresses whether covariate influences measurement.  
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MG-MIMIC Models 

• But, covariate may predict values of the 
measured trait.  
– e.g., Education may predict mental heath 

symptomatology.  

 

• As a result, covariate may indirectly influence 
measurement.  

 

• A structural component to the model captures 
these notions. 

 



Evaluating Bias: MG-MIMIC 

•        represents the covariate.  

 

• Parameters in γ capture the indirect effects. 

 

•        represents the average value of the factor. 

 

•        correspond to the residuals in the model.   
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Evaluating Bias: MG CFA-OCM 

• Subscript parameters to allow group differences.  

 

• To the extent that cross-group constraints in κg, 
g, g,                                , and g lead to 
problematic GFIs, measurement bias presents.  

  
)110 ,...,, sjgjgjg 



MG-MIMIC Models 



Using MG-MIMIC to assess Bias 

• How do we do this in practice? 

 

• Use series of hierarchically nested models. 

 

• Examine tenability of cross-group constraints in 
the measurement parameters. 

• (Muthén, 1989; Jones, 2006; Millsap & Yun-Tien, 
2004). 

 



Using MG-MIMIC to assess Bias 

• Begin with the least restricted cross-group model. 

 

• Successively add cross-group equivalence 
constraints in subsequent models. 

 

• Bias assessed in each set of measurement 
parameters separately.  

 

• Model suitability addressed through several 
goodness-of-fit-indices (GFIs). 

• (Hu & Bentler, 1999). 

 



Using MG-MIMIC to assess Bias 

• If GFI set suggests fit not tenable at a given step, 
bias presents. 
– Bias in at least one statistical parameter. 

– Cross group comparisons not appropriate without 
adjustment.  

 

• If GFIs suggest tenable model fit, analyses 
examine equivalence constraints in next 
parameter set of interest.  

 

 

 



Current Study 

• Utilized MG-MIMIC to examine alcohol abuse 
behavior. 
– Probed for bias across race and ethnicity in the 2001-

2002 National Epidemiologic Survey on Alcohol and 
Related Conditions.  

– (NESARC: Grant, Kaplan, Shepard, & Moore, 2003). 

 

• MG-MIMIC models simultaneously included 
participant’s education and income level in 
analyses.  

• Education: No high school vs. high school or more. 
• Income: Below and above 200% poverty level.   

 

 

 

 

  



Methods 

• Participants (n = 25,512). 
– White: n = 16,480. 

– Black: n = 4,139. 

– Hispanic: n = 4,893. 

 

• Represent noninstitutionalized US adults. 

 

• Ten (10) questions operationalized DSM-IV 
construct of alcohol abuse. 

 

• All analyses used Mplus and incorporated 
complex design and weights. 

• (5.1: Muthén  & Muthén, 1998-2007). 

 



Methods 

• Complex, multistage sampling approach used 
stratified random sampling. 
– Oversampling insured increased accuracy for 

Hispanics, African-Americans, young adults.  

 

• Design weights adjust for varying selection 
probability, other issues, and make data nationally 
representative. 

 
• Used zero weight approach to subset data. 

– (Korn & Graubard, 2003).  



Results: MG-MIMIC 

• Similar unconstrained model fit across all 
grouping variables. 
– RMSEA = 0.021 

– CFI = 0.98 

– TLI = 0.98 

– McDonald’s NCI > 0.99 

– Gamma Hat = 0.999 

 

• Items should measure a similar construct and 
have comparable meaning regardless of race, 
ethnicity, education, or poverty status. 

 



Results: MG-MIMIC 

• Model examining direct effects of poverty and 
education uncovered bias. 

 

– Δ2 = 191.19 (24, n = 25,512, p < 0.01)  

 

• Univariate analyses identified problematic 
constraints.  

 

 



Results: MG-MIMIC 

• For more highly education whites: 
– Easier to endorse alcohol: 

• Caused trouble with job/school (Δκ = - 0.05).  
• Caused trouble with family/friends (Δκ = - 0.044). 
• Led to fights (Δκ = -0.038) 
• Led to legal problems (Δκ = - 0.035) 

 

– More difficult to endorse: 
• Driving while drinking (Δκ = 0.044)   
• Driving after drinking (Δκ = 0.024) 
• Harmful situations while drinking (Δκ = 0.034) 

 

 



Results: MG-MIMIC 

• For whites in poverty: 
– Easier to endorse: 

• Driving while drinking (Δκ = - 0.095).  
• Driving after drinking (Δκ = - 0.054). 

 

– More difficult to endorse alcohol: 
• Caused trouble with job/school (Δκ = 0.100).  
• Caused trouble with family/friends (Δκ = 0.058). 
• Led to fights (Δκ = 0.067) 
• Led to legal problems (Δκ = 0.064) 

 

• Similar (but not identical) pattern among Blacks 
and Hispanics.  

 



Results: MG-MIMIC 

• Next examined equivalence in the loadings across 
Whites, Blacks, and Hispanics. 

 

• Uncovered systematically biased loadings. 
 

– Δ2 = 30.40 (14, n = 25,512, p < 0.01)  

 



Results: MG-MIMIC 

• For Blacks: 
– Driving while drinking related less strongly to abuse 

(Δλ = - 0.852). 

 

• For Hispanics: 
– Driving while drinking related less strongly to abuse 

(Δλ = - 0.903). 

– Riding in vehicle while driver drinks related less 
strongly to abuse (Δλ = - 0.419). 

 

• For the driving while drinking item, the loading 
did not differ between Blacks and Hispanics. 



Results: MG-MIMIC 

• Next examined equivalence in the thresholds 
across Whites, Blacks, and Hispanics. 

 

• Model uncovered systematically biased 
thresholds. 

 

– Δ2 = 88.87 (13, n = 25,512, p < 0.01)  

 



Results: MG-MIMIC 

• For Blacks: 
– Easier to endorse drinking while driving (Δυ = - 0.921). 

– More difficult to endorse driving after drinking (Δυ = 0. 
593). 

– More difficult to endorse entering harmful situations 
after drinking (Δυ = 0.68). 

 

• For Hispanics: 
– Easier to endorse drinking while driving (Δυ = - 0.96). 

– More difficult to endorse driving after drinking too 
much (Δυ = 0.457). 

– More difficult to endorse entering harmful situations 
after drinking (Δυ = 0.456). 



Results: MG-MIMIC 

• Compared estimates ignoring systematic 
measurement error to adjusted estimates from 
final MG-MIMIC model. 
– Adjusted estimates mitigate measurement error.  

 

• Addresses whether measurement bias influences 
conclusions.  

 



Results: MG-MIMIC 

• Unadjusted means: 
– Whites: 0 (Reference group) 

– Blacks: 0.43 z = 7.82, p  < 0.01: More abuse. 

– Hispanics : 0.173 = 2.11, p  < 0.05: More abuse.  
 

• Adjusted means: 
– Whites: 0 (Reference group) 

– Blacks: 0.136 z = 1.855, ns.: No difference. 

– Hispanics : -2.261 = -2.20, p  < 0.05: Less abuse.  



Results: MG-MIMIC 

White Black Hispanic

Ignoring Systematic Measurement

Error

Mitigating Systematic Measurement

Error

A
v

er
ag

e 
S

co
re

 



Discussion 

• MG-MIMIC showed that systematic measurement 
error significantly and substantially affects alcohol 
abuse affects estimates in the diverse population. 

 

• Without mitigating systematic error, efforts to 
identify and understand disparities and inequities 
across these populations result in flawed 
conclusions. 

 

 



Discussion 

• Ignoring systematic measurement error: 
– Appears both Blacks and Hispanics engage in more 

alcohol abuse behavior relative to Whites.  
• Based on unadjusted estimates.  

 

• After mitigating systematic measurement error, 
analyses show that: 
– Blacks do not differ from Whites. 

– Hispanics engage in less abuse behavior than Whites.  

 



Limitations 

• Self report data. 
– Responses may not reflect children’s actual health.  

 

 
 

 



Limitations 

• MG-MIMIC can only detect biased thresholds for 
background variables.  
– Leaves loadings unaddressed. 

– Problem for background variables only.  

– Missing data approach possibilities. 

 

• If bias permeates the entire question set, analyses 
cannot detect this.  
– No statistical approach can.  

• (Millsap, 2006). 

 



Conclusion 

• Investigators too often treat race and 
ethnicity as explanatory variables.  

 

• Ethnicity acts as a proxy for other variables 
that systematically vary across people of 
different ethnic backgrounds.  

 



Conclusion 

• We should seek to uncover the variables for which 
ethnicity serves as a proxy. 

 

• We should advance our statistical models to 
incorporate the multiple influences on health 
outcomes.  

 

 

 

 

 



Conclusion 

• We should seek to uncover the variables for which 
ethnicity serves as a proxy. 

 

• We should advance our statistical models to 
incorporate the multiple influences on health 
outcomes.  

 

 

 

 

 



Conclusion 

• Remember, before making cross-group 
comparisons, must consider measurement 
equivalence across groups.  

 

• Do observed group differences reflect true 
differences? 

 

• Or, do group differences result from systematic 
measurement error? 

 

• And, do observed similarities reflect true 
similarities?  
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