Pharmacometrics
Application of Modeling & Simulation to Pediatric Drug Studies & Individualized Dosing

Alexander A. Vinks, PharmD, PhD, FCP
Professor, Pediatrics and Pharmacology
Director, Division of Clinical Pharmacology
Pharmacometrics

the Science of Quantitative Pharmacology

- Use of models based on pharmacology, physiology and disease for quantitative analysis of interactions between drugs and patients
- This involves PK, PD and disease progression with a focus on populations and variability
- To better predict and control exposure and response in individual patients
- Achieve paradigm shift in way we do pediatric clinical drug studies

http://en.wikipedia.org/wiki/Pharmacometrics
Pharmacometrics & Systems Pharmacology

Integration of model-based drug discovery and development

Systems Biology ↔ Systems Pharmacology ↔ Translational Sciences ↔ Exposure Response ↔ Optimized Medicines

‘Right Pathway’ ↔ ‘Right Target’ ↔ ‘Right Molecule’ ↔ ‘Right Dose’ ↔ ‘Right Patients’

Impact

Van der Graaf Editorial PSP-CPT 2012
Why Pediatric Pharmacometrics

- Off-label use of 50-60% in children and up to 90% in (premature) neonates
- Missing information on Pharmacokinetics, Efficacy and Safety
- Lack of informative pediatric drug labels
- Missing age-appropriate dosage forms for the pediatric population
Informative PK/PD Study Design

Getting the Dose right

How many patients?

How many samples

Modeling & Simulation
How to Double Success Rate of Pediatric Trials?

Simulate2Design

Model4Approval

Joga Gobburu

Division of Pharmacometrics
Office of Clinical Pharmacology
Office of Translational Sciences,
CDER/FDA

jogarao.gobburu@fda.hhs.gov
Developmental Pharmacology Concepts

- Growth and development are two linked co-linear processes in children
- Size standardization is achieved by allometric scaling
- Age is used to describe maturation of clearance
Mechanistic Basis of Using Body Size and Maturation to Predict Clearance

Acetaminophen clearance

Maturation of GFR and other drugs

Model-based Trial Design

Prior Knowledge
PK/PD Model

Clinical Trial Simulation

Scenario Analysis
Dose Selection

Learn & Confirm

change the outcome®
How modeling and simulation can help in the design of pediatric studies

- Development of a population PK/PD/PG model using newly generated or prior knowledge
- Simulation of ‘realistic’ virtual patients
- Simulation of the virtual clinical study
 - How many patients & how many samples
 - What are the best times for sampling
- Optimizing of trial design and data analysis method prior to the study
Development of Population Model based on prior knowledge

- Population analyses
 - Non-compartmental (WinNonlin)
 - One-compartmental model (NONMEM)
 - Absorption model with/without lag time
- Covariates e.g. WT, AGE, PGx
 - Allometrically scaled: \(CL = CL_{std} \times (WT/70)^{0.75} \)
- Variability components
 - IIV on all parameters except F and lag time
 - IOV on bioavailability, Ka and lag time
- Simulations
 - Across age range
 - Sample from realistic age-weight distribution

From available data

From literature & available data

From available data
Determining Sample Size

- How many patients?
 - Required number of patients for statistically robust estimation of PK/PD relationship(s)
- How many samples per patients?
- What best times to sample
 - Optimal sampling strategies
How to get Best Estimates?

• Create a design that will yield the smallest confidence region

Powering Population PK studies

- Power equation to determine sample size or sampling, a 20% SE has been proposed as the quality standard

Gobburu, Pediatric advisory committee meeting, 2009
Jacqmin, J&J Pediatric Symposium, 2005
The study must be prospectively powered to target a 95% CI [confidence interval] within 60% and 140% of the geometric mean estimates of clearance and volume of distribution for DRUG NAME in each pediatric sub-group with at least 80% power.
Sample Size Calculation for PopPK Analysis

- Sparse/Rich PK sampling design
- Nonlinear mixed-effect modeling & clinical trial simulation is generally needed to derive the appropriate sampling schedule and the sample size.
- FDA quality standard:
 - Calculate the 95% CI for a derived parameter such as CL when a covariate model is applied for this parameter

\[CL_i = CL_{pop} \cdot \left[\frac{WT_i}{70\text{kg}} \right]^{0.75} + \eta_{CL,i} \]
Sample Size Requirements based on FDA criterion

Sample size to achieve 95% upper Cl ≤ 1.4 * Mean

Variability (% CV)
Table 2: Sample sizes per age group for three drugs submitted as a part of a BPCA pediatric exclusivity program. The failure to meet the proposed quality standard is indicated by “Pass CL?” and “Pass V?”. For the failed groups, the ratio of 95% upper CI and the mean are presented.
Case study
Teduglutide PK/PD in Pediatric Patients with Short Bowel Syndrome

- Teduglutide - a synthetic glucagon-like peptide-2 analog
 - evaluated for treatment of short-bowel syndrome (SBS)
- Design Pediatric multiple-dose Phase-I clinical study
 - determine safety, efficacy and PK of teduglutide in pediatric patients with SBS aged 0-12 months
- Application of clinical trial simulations
 - novel generalized additive modeling approach for location scale and shape (GAMLSS)
 - facilitates simulating population specific demographic covariates
- Goal was to optimize likelihood of achieving target exposure and therapeutic effect
 - based on observations in adult patients

Development of Pediatric Population Model

- Structural 3-compt PK model with oral absorption (NONMEM)
 - Healthy volunteers (IV data)
- Allometric scaling component on clearance (CL) and volume of distribution (V)
- Model modified to include glomerular filtration rate (GFR) maturation as part of TDG clearance change over time
 - \(MF = \frac{PMA^{Hill}}{TM50 + PMA^{Hill}} \)
 - TM50 is the maturation half-time

\[
CL_i = CL_{\text{adult}} \cdot \left(\frac{WT_i}{WT_{\text{adult}}} \right)^{0.75}
\]

Where \(CL_i \) is Clearance of the individual, e.g. child or neonate.
Expressed as L/h/70Kg
Generating Realistic Covariates

- SBS patients have body weights below the 5th quantile of their respective age groups.
- GAMLSS modeling was used to simulate age-matched body weights values below the 5th quantile (R code).

GAMLSS: Generalized Additive Models for Location, Scale and Shape
Predicted Teduglutide Exposure based on Clinical Trial Simulations
Clinical Trial Simulation results
Teduglutide dosing strategy to achieve optimal target attainment

- Dose reductions of 55, 65, 75, and 85% in the 0–1-, 1–2-, 2–3-, and 3–6-month age groups, compared with the optimal dosing regimen in the 6–12-month age group.
- Percentages of patients with steady-state teduglutide exposure within the targeted window of efficacy.
Continuing Paradox of Drug Development

1. Clinical trials provide evidence of efficacy and safety at usual doses in populations

\[
\begin{array}{c}
\text{Efficacious & Safe} \\
+ \\
\text{Efficacious & Safe}
\end{array}
\]

2. Physicians treat individual patients who can vary widely in their response to drug therapy

\[
\begin{array}{c}
\text{No Response} \\
+ \\
\text{Efficacious & Safe} \\
\rightarrow \\
\text{Adverse Drug Reaction}
\end{array}
\]
DASHBOARDS
Web-based decision support for individualized immunosuppression

What if we had pharmacokinetic and pharmacogenetic data, …adherence data and … protocol recommended drug exposure targets and … patient reported outcomes (side effects) and … passive patient reported outcomes…
all in the same place?

David K. Hooper, MD, MS - Nephrology & Hypertension
Keith Marsolo, PhD - Biomedical Informatics
Ahna Pai, PhD - Center for Treatment Adherence
Alexander A. Vinks, PharmD, PhD - Clinical Pharmacology

Supported by a Place Outcomes Award
One Dose Does Not Fit All
Large variability at standard doses

MPA AUC (mg・hr/L)

Kidney

Heart

Liver

Target

Target

MMF Dose, 1 g BID

Bayesian Estimation

Prior Probability
- Population Model

New Info
- Concentration Biomarker

Objective Function
- Consider Prior + New

Posterior Probability
- Individual Model

Goals
- Look at Patient
- Think

Control
- Select drug
- Calculate Dose

\[\Phi_2 = \sum_{i=1}^{n} \left(\frac{C_i - E_i}{S_i} \right)^2 + \sum_{k=1}^{m} \left(\frac{\theta_k - \mu_k}{\sigma_k} \right)^2 \]

Courtesy: Roger Jelliffe, MD, USC, Los Angeles

Thomas Bayes 1702 - 1761
Target-Controlled Model-Based Individualized Dosing

- Patient data
- PK/PD/PG Population Model
- Check Target Attainment and Response
- Patient
- Targeted Dosing

Disease progression – improvement & Outcomes measures
Individualized Mycophenolate Mofetil Dosing Based on Drug Exposure Significantly Improves Patient Outcomes After Renal Transplantation

Y. Le Meura,\ast, M. Büchlerb, A. Thierryc, S. Caillardd, F. Villemaine, S. Lavaudf, I. Etienneg, P.-F. Westeelh, B. H. de Lignyi, L. Rostaingj, E. Thervetk, J. C. Szélaga, J.-P. Rérollea, A. Rousseaul, G. Touchardc and P. Marquetm

aDepartment of Nephrology, University Hospital, Limoges, France

- APOMYGRE (Multicenter study, France):
- Randomized study evaluating model-based Bayesian dose adjustments
- 11 centers, 137 patients - first year post-transplantation
- Primary outcomes parameter: treatment failure
- Acute rejection - Graft loss – Death - GI, infections and hematological AEs
Adherence system is based on the MEMS monitor
Prototype Dashboard MMF
Real life application of M&S

Participating Centers

Patient visit
Sample collection
UPS shipment
Web/email notification

Centralized LC-MS/MS Analysis

Confirmation
Dose change

Bayesian estimation
Dosing recommendation
Uploaded to web
Email notification

Results reported
On Web
Email notification
Sent out
Model-based decision support

- Dose adjustment based on Bayesian feedback
- Capturing of maturation of clearance and changes over time
 - Disease progression/improvement
 - Other factor e.g. infections
Conclusions

• Modeling and simulation are powerful tools for the design of informative PK/PD studies

• With relative little data, and application of literature information it is possible to make informed decisions on pediatric study design

• Implementation of D-optimal design will increase information content and improve the cost-effectiveness of studies

• Model-based dosing (Bayesian estimator) is the way forward in ‘personalized’ clinical trials
Acknowledgements

Clinical Pharmacology
- Shareen Cox, BS
- Tsuyoshi Fukuda, PhD
- Catherine Sherwin, PhD
- Min Dong, PhD
- Tomoyuki Mizuno, PhD
- Chie Emoto, PhD

Pharmacometrics Core
- Siva Sivaganesan, PhD
- Raja Venkatasubramanian, PhD

Pharsight
- Samer Mouksassi, PharmD
- JF Marier, PhD

Support:
- NIH 5U10-HD037249 and 1K24HD050387
- CCTST-T1 and CCHMC Translational Research Initiative